Abstract

The in-vivo profiling of iron and myelin across cortical depths and underlying white matter has important implications for advancing knowledge about their roles in brain development and degeneration. Here, we utilize χ-separation, a recently-proposed advanced susceptibility mapping that creates positive (χpos) and negative (χneg) susceptibility maps, to generate the depth-wise profiles of χpos and χneg as surrogate biomarkers for iron and myelin, respectively. Two regional sulcal fundi of precentral and middle frontal areas are profiled and compared with findings from previous studies. The results show that the χpos profiles peak at superificial white matter (SWM), which is an area beneath cortical gray matter known to have the highest accumulation of iron within the cortex and white matter. On the other hand, the χneg profiles increase in SWM toward deeper white matter. These characteristics in the two profiles are in agreement with histological findings of iron and myelin. Furthermore, the χneg profiles report regional differences that agree with well-known distributions of myelin concentration. When the two profiles are compared with those of QSM and R2*, different shapes and peak locations are observed. This preliminary study offers an insight into one of the possible applications of χ-separation for exploring microstructural information of the human brain, as well as clinical applications in monitoring changes of iron and myelin in related diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call