Abstract

Congenital scoliosis (CS) is a lateral curvature of one or more segments of the spine due to spinal dysplasia during fetal life. CS is clinically defined as a curvature of the spine >10° due to structural abnormalities of the vertebrae during the embryonic period. Its etiology is unknown, but recent studies suggest that it may be closely related to genetic factors, environmental factors, and developmental abnormalities. The induction methods and modern applications of bone marrow MSCs provide a reference for in-depth human research on the induction of differentiation of bone marrow MSCs into osteoblasts. In this paper, by reviewing and organizing the literature on bone marrow MSCs, we summarized and analyzed the biological properties and preparation of bone marrow MSCs, the methods of inducing osteoblasts, the applications in tissue engineering bone, the problems faced, and the future research directions and proposed a method to assess the differentiation ability of bone marrow MSCs in patients with congenital scoliosis based on depth visual characteristics and the change of the method. The method reveals and evaluates the multidirectional differentiation potential of bone marrow MSCs, which can be induced to differentiate into osteoblasts in vitro and can be used to construct bone tissue engineering scaffolds in vitro using tissue engineering techniques. Based on the properties of bone marrow MSCs, their application in congenital scoliosis patients for trauma repair, cell replacement therapy, hematopoietic support, and gene therapy is quite promising. It is necessary to carry out research on the mechanism of osteogenic differentiation of bone marrow MSCs to provide guidance and reference value for their induced differentiation into osteoblasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.