Abstract

Plant residues show carbon:nitrogen (C:N) decreases, 15N isotopic enrichment and preferential loss of labile substrates during microbial decay. In soil profiles, strikingly similar patterns of decreasing C:N and 15N isotopic enrichment with increasing depth are well documented. The parallel trend in organic matter composition with soil depth and during plant residue decay has been used as evidence to suggest that organic products accumulate or develop in the subsoil due to increasing intensity of microbially-driven processing, although no studies to date have verified this. Here, by applying sequential density fractionation, specific surface area, oxalate extractable Fe and Al, C:N and δ15N measures with depth to soils with relatively uniform soil mineralogy (Oxisols), climates and vegetation we show that changes in organo-mineral associations drive subsoil C:N and δ15N and C:N depth patterns more than in situ organic matter decay. Our results provide the first direct evidence that soil depth trends could be driven by mineral association instead of in situ processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.