Abstract

Agricultural management decision-making in salinization-prone environments requires efficient soil salinity monitoring methods. This is the case in the B-XII irrigation district in SW Spain, a heavy clay reclaimed marsh area where a shallow saline water table and intensively irrigated agriculture create a fragile balance between salt accumulation and leaching in the root zone, which might be disrupted by the introduction of new crops and increasing climate variability. We evaluated the potential of electromagnetic induction (EMI) tomography for field-scale soil salinity assessment in this hyper-conductive environment, using EMI and limited analytical soil data measured in 2017 and 2020 under a processing tomato–cotton–sugar beet crop rotation. Salinity effects on crop development were assessed by comparing Sentinel 2 NDVI imagery with inverted depth-specific electrical conductivity (EC). Average apparent electrical conductivity (ECa) for the 1-m depth signal was 20% smaller in 2020 than in 2017, although the spatial ECa pattern was similar for both years. Inverted depth-specific EC showed a strong correlation (R ≈ 0.90) with saturated paste extract EC (ECe), [Na+] and sodium absorption ratio (SAR), resulting in linear calibration equations with R2 ≈ 0.8 for both years and leave-one-out cross validation Nash–Sutcliffe Efficiency Coefficient, ranging from 0.57 to 0.74. Overall, the chemical parameter estimation improved with depth and soil wetness (2017), yielding 0.83 < R <0.98 at 0.9 m. The observed spatial EC distributions showed a steadily increasing inverse correlation with NDVI during the growing season, particularly for processing tomato and cotton, reaching R values of −0.71 and −0.85, respectively. These results confirm the potential of EMI tomography for mapping and monitoring soil salinity in the B-XII irrigation district, while it allows, in combination with NDVI imagery, a detailed spatial assessment of soil salinity impacts on crop development throughout the growing season. Contrary to the popular belief among farmers in the area, and despite non-saline topsoil conditions, spatial EC and subsoil salinity patterns were found to affect crop development negatively in the studied field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.