Abstract

Legacy phosphorus (P) has accelerated the subsurface transport of colloidal P (CP) in intensively managed agricultural soils in the Midwestern U.S. Because of its high P sorption capacity and mobility, understanding the depth sequence distribution of mobile CP and its speciation in the soil profile is critical in assessing total P (TP) loss to protect the water quality of adjacent water bodies. In this study, physicochemical properties of water-extractable colloids (WECs) from the soil profile at 0–180 cm were characterized using conventional wet chemical analysis. Solution P-31 nuclear magnetic resonance spectroscopy (NMR), P and Fe K-edge X-ray absorption spectroscopy, and transmission electron microscopy were also used to understand P speciation and mineralogy of CP. Percent recovery of WECs per bulk soil increased more than three times with increasing depth. Considering mildly alkaline pH of pore water and negative zeta potential (−21 ± 4 mV) of WECs (size: 1.65 ± 0.45 μm), the transport of P rich WECs (TP: approximately 210–700 mg kg−1) were facilitated from surface to subsoils. Generally, TP in WEC decreased with increasing depth. Interestingly, WECs in subsoil contain organic P (OP) as much as 60 mg kg−1. NMR analysis clearly showed the presence of OP monoesters, OP diesters, and orthophosphate in these particles. Both orthophosphate and OP species interacted with iron oxyhydroxides, calcite, and aluminol functional groups of gibbsite and or phyllosilicates. The study showed the availability of WECs from surface to subsoils that carry orthophosphate as well as OP in legacy P impacted agricultural soils in the Midwestern U.S.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.