Abstract

This paper introduces a novel depth recovery method based on light absorption in water. Water absorbs light at almost all wavelengths whose absorption coefficient is related to the wavelength. Based on the Beer-Lambert model, we introduce a bispectral depth recovery method that leverages the light absorption difference between two near-infrared wavelengths captured with a distant point source and orthographic cameras. Through extensive analysis, we show that accurate depth can be recovered irrespective of the surface texture and reflectance, and introduce algorithms to correct for nonidealities of a practical implementation including tilted light source and camera placement, nonideal bandpass filters and the perspective effect of the camera with a diverging point light source. We construct a coaxial bispectral depth imaging system using low-cost off-the-shelf hardware and demonstrate its use for recovering the shapes of complex and dynamic objects in water. We also present a trispectral variant to further improve robustness to extremely challenging surface reflectance. Experimental results validate the theory and practical implementation of this novel depth recovery paradigm, which we refer to as shape from water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.