Abstract

Diffuse optical topography has excellent features as a noninvasive method that provides 2D location information of cortical activity. However, it cannot distinguish the activation depth. We propose an image reconstruction algorithm that suppresses undesirable effects of skin circulation. It comprises a filtering algorithm that extracts target signals from observation data contaminated by disturbing signals and a 2D visualizing process. Computer simulations revealed its excellent performance. We developed a depth selective diffuse optical topography system prototype and performed phantom experiments. Our algorithm significantly suppressed the influence of the disturbing body in the shallow plane with minimal degradation of the target signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.