Abstract
Sensorless adaptive optics optical coherence tomography (AO-OCT) is a technology to image retinal tissue with high resolution by compensating ocular aberrations without wavefront sensors. In this Letter, a fast and robust hill-climbing algorithm is developed to optimize five Zernike modes in AO-OCT with a numerical aperture between that of conventional AO and commercial OCT systems. The merit function is generated in real time using graphics processing unit while axially tracking the retinal layer of interest. A new method is proposed to estimate the largest achievable field of view for which aberrations are corrected uniformly in sensorless AO-OCT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.