Abstract
The novel approaches to study the II–VI-based laser heterostructures using cathodoluminescence and electron probe microanalysis techniques are described in detail. The heterostructures were grown by molecular beam epitaxy on GaAs (001) substrates and consist of bottom and top ZnMgSSe cladding layers and ZnCdSe/ZnSe quantum well embedded in Zn(Mg)SSe/ZnSe graded index waveguide. The microanalysis technique based on the intensity measurements of characteristic X-rays has been applied to determine both the composition of ZnCdSe quantum well layer and its position within heterostructure. The depth resolved cathodoluminescence technique has been applied for the transport studies of electron beam generated carriers in heterostructure. The cathodoluminescence intensity of ZnCdSe quantum well has been measured as a function of electron beam energy. The Monte-Carlo simulations of carrier generation distribution within the heterostructure under electron beam irradiation have been used for fitting of experimental results. It made possible the nondestructive characterization of the multilayer heterostructure to estimate both deficiency and carrier transport length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.