Abstract
Introducing Time-of-Flight 3-D image sensors to actual engineering applications, such as pattern recognition, is constrained not only by their limited depth and lateral resolution, but also by how similar the precision of depth measurement throughout the whole pixel-matrix is. In real operating environment, an observed 3-D-scene hardly exhibits a homogeneous reflectance factor. Moreover, the light-beam (laser source) presents a nonuniform optical power distribution in space. Thus, the amount of the incident light on the sensor surface varies drastically from one pixel to another, and so does the signal-to-noise ratio. To address this problem, this paper investigates the impact of both scene and light-source non-ideal characteristics on the sensor performance. An adaptive on-pixel analog signal processing technique is also presented and applied to the design of a 32 × 32 complementary metal oxide semiconductor (CMOS) range camera, featuring an interesting cost-efficient solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.