Abstract

Thin polymer films were deposited on polished stainless-steel samples by PECVD from a cyclopropylamine precursor and characterized by X-ray photoelectron spectroscopy, secondary-ion mass spectrometry and glow-discharge optical emission spectroscopy (GDOES) depth profiling. These depth profiles exhibited reasonable agreement. The GDOES involved the erosion of the polymer films in plasma sustained by an asymmetric RF capacitively coupled discharge using both Ar and Ar-O2 gases. The application of pure Ar caused unwanted effects, such as the broadening of the polymer-film/substrate interface, which were suppressed when using the mixture with oxygen. Another benefit of oxygen was a significant increase in the etching rate by a factor of about 15 as compared to pure argon. The mechanisms involved in the depth profiling using the mixture of gases were elaborated in some detail, taking into account plasma parameters typical for an asymmetric, capacitively coupled RF discharge in a small volume. The main benefit of using the Ar/O2 GDOES profiling with respect to XPS and SIMS depth profiling is the increased sputtering rate for polymer films. Comparing the GDOES depth profiling with the Ar/O2 mixture with profiling in pure Ar, the benefits are a higher sputtering rate and better depth resolution at the polymer/substrate interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.