Abstract
We have reported depth and in-plane profiling of strain, Ge composition, and defects in strained-Si∕Si1−xGex∕Si heterostructures using micro-Raman imaging. Raman profiling in the depth direction was carried out with a depth resolution of ∼15nm using a small-angle beveled sample and ultraviolet (UV) excitation. Depth profiles of the Ge composition and Raman bandwidth clearly show that the defect density depends strongly on the Ge-grading rate in a compositionally graded Si1−xGex layer. The in-plane strain variation at a given depth in each layer has been evaluated. The in-plane strain variations in the Si1−xGex are closely related to clustering of misfit dislocations in the graded Si1−xGex layer. For the top strained-Si layer, two-dimensional UV-Raman images of the frequency and bandwidth of the Si band reveal that film crystallinity is correlated with the magnitude of in-plane strain. The close correlation between the frequency and bandwidth is attributed to inhomogeneous strain fields associated with misfit dislocation clusters, which induce complete relaxation of strain in constant composition Si1−xGex layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.