Abstract
With the constant increase in demand for data connectivity, network service providers are faced with the task of reducing their capital and operational expenses while ensuring continual improvements to network performance. Although Network Function Virtualization (NFV) has been identified as a solution, several challenges must be addressed to ensure its feasibility. In this letter, we present a machine learning-based solution to the Virtual Network Function (VNF) placement problem. This letter proposes the Depth-Optimized Delay-Aware Tree (DO-DAT) model by using the particle swarm optimization technique to optimize decision tree hyper-parameters. Using the Evolved Packet Core (EPC) as a use case, we evaluate the performance of the model and compare it to a previously proposed model and a heuristic placement strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.