Abstract

This paper presents a decision support tool for manufacturers and recyclers towards end-of-life strategies for waste electrical and electronic equipment. A mathematical formulation based on the cost benefit analysis concept is herein analytically described in order to determine the parts and/or components of an obsolete product that should be either non-destructively recovered for reuse or be recycled. The framework optimally determines the depth of disassembly for a given product, taking into account economic considerations. On this basis, it embeds all relevant cost elements to be included in the decision-making process, such as recovered materials and (depreciated) parts/components, labor costs, energy consumption, equipment depreciation, quality control and warehousing. This tool can be part of the strategic decision-making process in order to maximize profitability or minimize end-of-life management costs. A case study to demonstrate the models’ applicability is presented for a typical electronic product in terms of structure and material composition. Taking into account the market values of the pilot product’s components, the manual disassembly is proven profitable with the marginal revenues from recovered reusable materials to be estimated at 2.93–23.06 €, depending on the level of disassembly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.