Abstract

This paper introduces a novel approach for post-processing of depth map which enhances the depth map resolution in order to achieve visually pleasing 3D models from a new monocular 2D/3D imaging system consists of a Photonic mixer device (PMD) range camera and a standard color camera. The proposed method adopts the revolutionary inversion theory framework called Compressive Sensing (CS). The depth map of low resolution is considered as the result of applying blurring and down-sampling techniques to that of high-resolution. Based on the underlying assumption that the high-resolution depth map is compressible in frequency domain and recent theoretical work on CS, the high-resolution version can be estimated and furthermore reconstructed via solving non-linear optimization problem. And therefore the improved depth map reconstruction provides a useful help to build an improved 3D model of a scene. The experimental results on the real data are presented. In the meanwhile the proposed scheme opens new possibilities to apply CS to a multitude of potential applications on various multimodal data analysis and processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.