Abstract

Abstract Subsurface defects (SSD) in optical components pose a significant challenge for enhancing the power density of high-energy laser devices. This study investigated the issue of systematic deviation between the measured and actual depths of SSD when employing optical dark-field confocal microscopy for three-dimensional measurements, which is attributed to refractive index disparities between the sample and the observation environment. This paper introduces geometric and diffraction optical models for correcting errors in the SSD depth, along with a calculation method for determining the correction coefficient. By comparing the experimental data and model simulations, a linear relationship between the measured and actual depths was identified with linearity errors below 2.5% and a minimum of 0.67%. The correction coefficients derived from the optical diffraction model are in good agreement with those obtained experimentally. These findings offer valuable insights for calculating SSD depth correction coefficients across various scenarios and requirements to ensure precise measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.