Abstract

Depth interactions between a frontal test surface and an adjacent induction surface were measured as a function of the type of disparity in the induction surface and of the vertical/horizontal orientation of the boundary between the surfaces. The types of disparity were 4 degrees horizontal-shear disparity, 4 degrees vertical-shear disparity, and 4 degrees rotation disparity; 4% horizontal-size disparity, 4% vertical-size disparity, and 4% overall-size disparity. Depth contrast in a frontal surface was produced by surfaces containing horizontal-size disparity but not by those containing horizontal-shear disparity. Vertical-shear and vertical-size disparities produced induced effects in both the induction and the test surface, which is here explained in terms of deformation-disparity processing. Effects of rotation disparity on the test surface can be accounted for in terms of cyclovergence, deformation disparity, and perhaps also depth contrast. The fact that horizontal-size disparity produced more depth contrast than horizontal-shear disparity is due to an anisotropy of disparity processing rather than the relative orientation of the surfaces. Ground surfaces appeared more slanted than ceiling surfaces. Surfaces containing horizontal disparities produced a sharp boundary with the test surface because horizontal disparities are processed locally. Surfaces with vertical disparities produced a gradual boundary with the test surface because vertical disparities are processed over a wider area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.