Abstract

The depth of a cell in an arrangement of n (non-vertical) great-spheres in Sd\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathbb {S}}^d$$\\end{document} is the number of great-spheres that pass above the cell. We prove Euler-type relations, which imply extensions of the classic Dehn–Sommerville relations for convex polytopes to sublevel sets of the depth function, and we use the relations to extend the expressions for the number of faces of neighborly polytopes to the number of cells of levels in neighborly arrangements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.