Abstract

New mid-Cretaceous stable isotope (δ18O and δ13C) records of multiple planktonic foraminiferal species and coexisting coccoliths from Blake Nose (western North Atlantic) document a major depth-ecology reorganization of planktonic foraminifera. Across the Albian/Cenomanian boundary, deep-dwellingPraeglobotruncana stephaniandRotalipora globotruncanoidesadapted to living at a shallower depth, while, at the same time, the population of surface-dwellingParacostellagerina libycadeclined. Subsequently, the opportunistic speciesHedbergella delrioensisshifted to a deep environment, and the deep-dwelling formsRotalipora montsalvensisandRotalipora reichelifirst appeared. The primary paleoenvironmental cause of the observed changes in planktonic adaptive strategies is uncertain, yet their coincidence with an earliest Cenomanian cooling trend reported elsewhere implicates the importance of reduced upper-ocean stratification. Although there has been an implicit assumption that the species-specific depth habitats of fossil planktonic foraminifera were invariant through time, planktonic paleoecology is a potential variable. Accordingly, the possibility of evolutionary changes in planktonic foraminiferal depth ecology should be a primary consideration (along with other environmental parameters) in paleoceanographic interpretations of foraminiferal stable isotope data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call