Abstract

One of the core applications of light field imaging is depth estimation. To acquire a depth map, existing approaches apply a single photo-consistency measure to an entire light field. However, this is not an optimal choice because of the non-uniform light field degradations produced by limitations in the hardware design. In this paper, we introduce a pipeline that automatically determines the best configuration for photo-consistency measure, which leads to the most reliable depth label from the light field. We analyzed the practical factors affecting degradation in lenslet light field cameras, and designed a learning based framework that can retrieve the best cost measure and optimal depth label. To enhance the reliability of our method, we augmented an existing light field benchmark to simulate realistic source dependent noise, aberrations, and vignetting artifacts. The augmented dataset was used for the training and validation of the proposed approach. Our method was competitive with several state-of-the-art methods for the benchmark and real-world light field datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.