Abstract
A theoretical and experimental study of nondestructive evaluation of surface-breaking cracks with linear surface acoustic wave (SAW) pulses is presented. Schwarz–Christoffel conformal mapping was used to introduce a special orthogonal coordinate system that conserves the profile of the cracked surface. The inverse problem for two dimensions has been solved by means of conformal mapping. Thermoelastically generated broadband SAW pulses were employed to study the scattering of linear SAW pulses by a single crack. The surface wave component transmitted through the isolated microcrack was recorded as a function of distance by the cw laser probe-beam-deflection method. The Fourier transform of the transmitted SAW waveforms provides a stationary solution for any frequency. With this procedure the depth of the crack, produced in a separate experiment with a strongly nonlinear SAW pulse in a silica sample, was evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.