Abstract

A new depth estimation method for 3D reconstruction in a synthetic aperture integral imaging framework is presented. This method removes the edges of the objects in the elemental images when the objects are in focus. This strategy aims to compensate for the noise that objects focused close to the cameras can introduce into the photo-consistency measure of objects at higher depths. Furthermore, a photo-consistency criterion is applied combining a defocus and a correspondence measure, and a depth regularization method which smooths noisy depth results for the case of object surfaces. The proposed method obtains consistent results for any type of object surfaces as well as very sharp boundaries. Experimental results show that our method reduces the noise in the object edges and gives rise to an improvement in the depth map results in relation to the other methods shown in the comparative analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.