Abstract
The distribution in an egg–phosphatidylcholine bilayer of a series of spin-labeled nitroxides, potentially useful as targeted antioxidants, has been investigated using molecular dynamics (MD) simulations. The in silico method has been tested at first for a series of n-doxyl-phosphocholine-doped bilayers, with the doxyl moiety located at different positions (n) of the lipid chain, in analogy to electron paramagnetic resonance (EPR) spin labeling and other MD studies. As a result, a novel calibration curve has been obtained, suitable to determine the absolute membrane penetration depth of any paramagnetic solute from EPR measurements. A second series of MD simulations was then carried out on the newly synthesized series of liponitroxides (NOXs) recently tested as antioxidants against the lipid peroxidation of polyunsaturated fatty acids in membranes: their penetration depths, as determined by EPR in phosphatidylcholine liposomes, were correlated with their antioxidant efficacy. In these NOXs, a glycerol moi...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.