Abstract
In-depth concentration profiles of deuterium (D) in beryllium oxide (BeO) films implanted with 3 keV D ions at 300 and 700 K have been determined using SIMS and RGA (residual gas analysis) measurements in the course of surface sputtering. The microstructure of implanted specimens was studied by TEM. Implanted D is found to be retained in the BeO matrix in the form of D atoms and D 2 molecules. At 300 and 700 K, the maximum concentration of deuterium in both states reaches values of 0.2 and 0.07 D/BeO, respectively. Irradiation with D ions at 300 and 700 K leads to the formation of tiny D 2 bubbles of 0.6–0.7 nm radius and of high volume density ≈(4–5) × 10 24 m −3. These bubbles together with the intercrystalline gaps are responsible for the accumulation of D 2 molecules. At both irradiation temperatures, D 2 concentration reaches in the ion stopping zone its maximum of 0.01 molecules/BeO. At 300 and 700 K, the major part of deuterium implanted in BeO films is present in the form of D atoms, probably chemically bound to O atoms. Maximum D atom concentration is 0.18 D atoms/BeO for 300 K and 0.05 D atoms/BeO for 700 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.