Abstract

Although the depth detection limit of fluorescence objects in tissue has been studied, reports with a model including noise statistics for designing the optimum measurement configuration are missing. We demonstrate a variance analysis of the depth detection limit toward clinical applications such as noninvasively assessing the risk of aspiration. It is essential to analyze how the depth detection limit of the fluorescence object in a strong scattering medium depends on the measurement configuration to optimize the configuration. We aim to evaluate the depth detection limit from theoretical analysis and phantom experiments and discuss the source-detector distance that maximizes this limit. Experiments for detecting a fluorescent object in a biological tissue-mimicking phantom of ground beef with background emission were conducted using continuous wave fluorescence measurements with a point source-detector scheme. The results were analyzed using a model based on the photon diffusion equations. Then, variance analysis of the signal fluctuation was introduced. The model explained the measured fluorescence intensities and their fluctuations well. The variance analysis showed that the depth detection limit in the presence of ambient light increased with the decrease in the source-detector distance, and the optimum distance was in the range of 10 to 15mm. The depth detection limit was found to be with this optimum distance for the phantom. The presented analysis provides a guide for the optimum design of the measurement configuration for detecting fluorescence objects in clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.