Abstract

Camera/image-based localization is important for many emerging applications such as augmented reality (AR), mixed reality, robotics, and self-driving. Camera localization is the problem of estimating both camera position and orientation with respect to an object. Use cases for camera localization depend on two key factors: accuracy and speed (latency). Therefore, this paper proposes Depth-DensePose, an efficient deep learning model for 6-degrees-of-freedom (6-DoF) camera-based localization. The Depth-DensePose utilizes the advantages of both DenseNets and adapted depthwise separable convolution (DS-Conv) to build a deeper and more efficient network. The proposed model consists of iterative depth-dense blocks. Each depth dense block contains two adapted DS-Conv with two kernel sizes 3 and 5, which are useful to retain both low-level as well as high-level features. We evaluate the proposed Depth-DensePose on the Cambridge Landmarks dataset, which shows that the Depth-DensePose outperforms the performance of related deep learning models for camera based localization. Furthermore, extensive experiments were conducted which proven the adapted DS-Conv is more efficient than the standard convolution. Especially, in terms of memory and processing time which is important to real-time and mobile applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.