Abstract

This paper investigates the depth control of an unmanned underwater remotely operated vehicle (ROV) using neural network predictive control (NNPC). The NNPC is applied to control the depth of the ROV to improve the performances of system response in terms of overshoot. To assess the viability of the method, the system was simulated using MATLAB/Simulink by neural network predictive control toolbox. In this paper also investigates the number of data samples (1000, 5000 and 10,000) to train neural network. The simulation reveals that the NNPC has the better performance in terms of its response, but the execution time will be increased. The comparison between other controller such as conventional PI controller, Linear Quadratic Regulation (LQR) and fuzzy logic controller also covered in this paper where the main advantage of NNPC is the fastest system response on depth control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.