Abstract

Several multivariate depth functions have been proposed in the literature, of which some satisfy all the conditions for statistical depth functions while some do not. Spatial depth is known to be invariant to spherical and shift transformations. In this paper, the possibility of using different versions of spatial depth in classification is considered. The covariance-adjusted, weighted, and kernel-based versions of spatial depth functions are presented to classify multivariate outcomes. We extend the maximal depth classification notions for the covariance-adjusted, weighted, and kernel-based spatial depth versions. The classifiers' performance is considered and compared with some existing classification methods using simulated and real datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.