Abstract

The target of 3D video coding is to compress Multiview Video plus Depth (MVD) format data, which consist of a texture image and its corresponding depth map. In the MVD format, the depth map plays an important role for successful services in 3D video applications, because it enables the user to experience 3D by generating arbitrary intermediate views. The depth map has a strong correlation with its associated texture data, so it can be utilized to improve texture coding efficiency. This paper introduces a novel and efficient depth-based texture coding scheme. It includes depth-based motion vector prediction, block-based view synthesis prediction, and adaptive luminance compensation, which were adopted in an AVC-compatible 3D video coding standard. Simulation results demonstrate that the proposed scheme reduces the total coding bitrates of texture and depth by 19.06% for the coded PSNR and 17.01% for the synthesized PSNR in a P-I-P view prediction structure, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.