Abstract
Dynamic environment interpretation is of special interest for intelligent vehicle systems. It is expected to provide lane information, target depth, and the image positions of targets within given depth ranges. Typical segmentation algorithms cannot solve the problems satisfactorily, especially under the high-speed requirements of a real-time environment. Furthermore, the variation of image positions and sizes of targets creates difficulties for tracking. In this paper, we propose a sensor-fusion method that can make use of coarse target depth information to segment target locations in video images. Coarse depth ranges can be provided by radar systems or by a vision-based algorithm introduced in the paper. The new segmentation method offers more accuracy and robustness while decreasing the computational load.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.