Abstract

Depth of an object concerns a tradeoff between computation time and excess of program length over the shortest program length required to obtain the object. It gives an unconditional lower bound on the computation time from a given program in absence of auxiliary information. Variants known as logical depth and computational depth are expressed in Kolmogorov complexity theory. We derive quantitative relation between logical depth and computational depth and unify the different depth notions by relating them to A. Kolmogorov and L. Levin’s fruitful notion of randomness deficiency. Subsequently, we revisit the computational depth of infinite strings, study the notion of super deep sequences and relate it with other approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.