Abstract
The first deprotonation of a borohydride anion was achieved by treatment of [BH(CN)3 ]- with strong non-nucleophilic bases, which resulted in the formation of alkali-metal salts of the tricyanoborate dianion B(CN)32- in up to 97 % yield and 99.5 % purity. [BH(CN)3 ]- is less acidic than (Me3 Si)2 NH but a stronger acid than iPr2 NH. Less sterically hindered, more nucleophilic bases such as PhLi and MeLi mostly attack a CN group under formation of imine dianions [RC(N)B(CN)3 ]2- , which can be hydrolyzed to ketones of the [RC(O)B(CN)3 ]- type. The boron-centered nucleophile B(CN)32- reacts with CO2 and CN+ reagents to give salts of the [B(CN)3 CO2 ]2- dianion and the tetracyanoborate anion [B(CN)4 ]- , respectively, in excellent yields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.