Abstract

Blood and lymph are two main pathways of tumor metastasis; however, hematogenous metastasis and lymphatic metastasis are difficult to inhibit simultaneously. Ferroptosis provides a new breakthrough for metastasis inhibition, but how to effectively trigger ferroptosis in tumor cells remains a major challenge. Metastatic tumor cells are prone to ferroptosis in blood, while they may be protected from ferroptosis in lymph. In this study, a nanoplatform DA/RSL3 was constructed for the intracellular codelivery of the polyunsaturated arachidonic acid (AA) and the GPX4 inhibitor RSL3, which could not only induce ferroptosis but also alleviate ferroptosis resistance. As a result, DA/RSL3 effectively triggered ferroptosis in tumor cells, thereby impairing the ability of tumor cells to metastasize in both blood and lymph. Furthermore, a fucoidan blocking strategy was proposed to maximize the efficacy of DA/RSL3. Fu+DA/RSL3 showed excellent efficacy in 4T1 tumor-bearing mice. This ferroptosis nanotherapy is promising for metastatic cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call