Abstract
AbstractThe main entries in longwall coal mine frequently encounter large deformation, depending on the stress environment. Depressurizing boreholes are applicable to reduce the large deformation; however, it is difficult to determine the proper parameters (diameter and spacing) for an effective implementation. This study aims to propose feasible design criteria for the quantification of those parameters. We first developed a rigorous numerical model, for a roadway in Zhangshuanglou coal mine, using the rock mechanical properties determined from extensive laboratory measurements and analyses. We then investigated the dependency of the stress transfer and roadway deformation on the ratio of borehole diameter and spacing (D/R and D/I). The symbols of D, R, and I represented the diameter, row spacing, and interspacing of the boreholes, respectively. We found that (a) D/R has to be between 1:6 and 1:2; and (b) D/I has to be between 1:6 and 1:4, for sufficient depressurization in the surrounding rocks. The optimized borehole diameter and spacing parameters were applied in the field where the deformation of roadway was significantly reduced. Finally, we proposed a criterion to determine those parameters of depressurization boreholes for application in other geological and mining conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.