Abstract

Major depressive disorder (MDD) is a prevalent psychiatric condition with a complex and unknown pathological mechanism. Resting-state functional magnetic resonance imaging (rs-fMRI) has emerged as a valuable non-invasive technology for MDD diagnosis. By utilizing rs-fMRI data, a dynamic brain functional connection network (FCN) can be constructed to represent the complex interacting relationships of multiple brain sub-regions. Graph neural network (GNN) models have been widely employed to extract disease-associated information. The simple averaging or summation graph readout functions of GNNs may lead to a loss of critical information. This study introduces a two-channel graph neural network (DepressionGraph) that effectively aggregates more comprehensive graph information from the two channels based on the node feature number and node number. Our proposed DepressionGraph model leverages the transformer–encoder architecture to extract the relevant information from the time-series FCN. The rs-fMRI data were obtained from a cohort of 533 subjects, and the experimental data show that DepressionGraph outperforms both traditional GNNs and simple graph readout functions for the MDD diagnosis task. The introduced DepressionGraph framework demonstrates efficacy in extracting complex patterns from rs-fMRI data and exhibits promising capabilities for the precise diagnosis of complex neurological disorders. The current study acknowledges a potential gender bias due to an imbalanced gender distribution in the dataset. Future research should prioritize the development and utilization of gender-balanced datasets to mitigate this limitation and enhance the generalizability of the findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call