Abstract

BackgroundEffective screening is important to combat the raising burden of depression and opens a critical time window for early intervention. Clinical use of non-verbal depression screening is nascent, yet a promising and viable candidate to supplement verbal screening. Differential self- and emotion-processing in depression patients were previously reported by non-verbal behavioural assessments, corroborated by neuroimaging findings of distinct neuroanatomical markers. Thus non-verbal validated brain-behaviour based self-emotion-related assessment data reflect physiological differences and may support individual level screening of depression. MethodsIn this pilot study (n = 84) we collected two longitudinal sessions of behavioural assessment data in a laboratory setting. Depression was assessed using Beck Depression Inventory II (BDI-II), to explore optimal screening methods with machine-learning, and to establish the validity of adapting a novel behavioural assessment focusing on self and emotions for depression screening. ResultsThe best machine-learning model achieved high performance in depression screening, 10-Fold cross-validation (CV) Area Under the receiver operating characteristic Curve (AUC) of 0.90 and balanced accuracy of 0.81, using a Gradient Boosting algorithm. Prospective prediction using a model trained with session 1 data to predict session 2 depression status achieved a 10-Fold CV AUC of 0.77 and balanced accuracy of 0.66. We also identified interpretable behavioural signatures for depression patients based on the best model. ConclusionThe study supports the utility of using behavioural data as a viable and cost-effective solution for depression screening, with a potential wide range of applications in clinical settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.