Abstract

The significant public health burden associated with late-life depression (LLD) is magnified by the high rates of recurrence. In this session, we review what is known about recurrence risk factors, conceptualize recurrence within a model of homeostatic disequilibrium, and discuss the potential significance and challenges of new research into LLD recurrence. The proposed model is anchored in the allostatic load theory of stress. We review the allostatic response characterized by neural changes in network function and connectivity and physiological changes in the HPA axis, autonomic nervous system, immune system and circadian rhythm. We discuss the role of neural networks’ instability following treatment response as a source of downstream disequilibrium, triggering and/or amplifying abnormal stress response, cognitive dysfunction and behavioral changes, ultimately precipitating a full-blown recurrent episode of depression. We propose strategies to identify and capture early change points that signal recurrence risk through mobile technology to collect ecologically-measured symptoms, accompanied by automated algorithms that monitor for state shifts (persistent worsening) and variance shifts (increased variability) relative to a patient's baseline. Identifying such change points in relevant sensor data could potentially provide an automated tool that could alert clinicians to at-risk individuals or relevant symptom changes even in a large practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call