Abstract

Both large amplitude depression and elevation internal solitary waves (ISWs) were observed on the continental shelf of the northwest South China Sea (SCS) during the Wenchang Internal Wave Experiment. In this study, we investigate the characteristics of depression and elevation ISWs based on comparisons between observational results and internal wave theories. It is suggested that the large amplitude depression wave is better represented by the extended Korteweg-de Vries (EKdV) theory than by the KdV model, whereas the large amplitude elevation wave is in better agreement with the KdV equation than with the EKdV theory. Wave-induced forces on a supposed small-diameter cylindrical pile by depression and elevation waves are also estimated using the internal wave theory and Morison formula. The wave-induced force by elevation ISWs is rarely reported in the literature. It is found that the force induced by the elevation wave differs significantly from that by the depression wave, and the elevation wave generally produces greater force on the pile in the lower water column than the depression wave. These results show that ISWs in the study area can present a serious threat to ocean engineering structures, and should not be ignored in the design of oil platforms and ocean operations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call