Abstract

Abstract New structural and stratigraphic mapping in the Isua greenstone belt, West Greenland has revealed that the exposed lithologic succession is quite different to that depicted in earlier studies. The key to a better understanding of the stratigraphy has been the recognition of intense strain and metasomatic effects combined with ductile fault structures that segment the belt into a number of tectonic slices. In some of these slices, deformation and metasomatism are somewhat lower than in surrounding slices (though still significant), which permit the recognition of primary depositional features that may be used to compare with lithologies from elsewhere in the belt. The belt is dominated by amphibolite that in a number of places show well-defined pillows. Pillow breccias and basaltic debris flows also occur within this package. Strongly recrystallized ultramafic bodies that occur in the belt are interpreted as intrusions or komatiitic flows. The most common sedimentary rock type is chert/banded iron-formation. These lithologies have been strongly affected by brittle and ductile deformation in combination with coarse recrystallization. Siliciclastic detrital rocks such as conglomerate and sandstone are much less common in the belt, and where present, have intrabasinally derived sources. Highly deformed quartzo-feldspathic schist crops out in a number of places in the belt and most likely has multiple origins. Previously these schists have been considered to be felsic volcaniclastic rocks, though recent mapping, and geochemical, and isotopic studies support the hypothesis that at least some of these schists are highy deformed and carbonated tonalitic gneiss sheets or replaced pillow-lava successions. Carbonate rocks in the belt are now considered to be mostly, or entirely, replacement in origin, where metasomatizing fluids have particularly utilized amphibolite–chert contacts; additionally, some carbonate may represent the products of early sea-floor alteration. We envision a temporarily emergent, below wave base, sea-floor origin for the succession based on the assemblage of lithologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.