Abstract

The evaporites of the Aptian Loémé Formation occur along the stable structural domain of onshore Congo as horizontally well-stratified depositional halite interbedded with Mg-poor potash minerals including carnallite, bischofite, tachyhydrite and sylvite. Eleven correlative depositional recharge-to-evaporation cycles are composed of suites of organic-prone shale followed by primary halite and carnallite beds, sometimes punctuated by a bischofite-tachyhydrite end-member.A sedimentological and petrographical analysis performed on cores and thin sections allowed an interpretation of nine facies associations, named as FA1 to FA9, relying upon the occurrence of bands of fluid inclusions, grain-size, dissolution features, detrital sediments, minute inclusions and sedimentary structures. A depositional model reconciles the spatial distribution of primary textures, hydrology, brine saturation and palaeo-depth during a standard regressive evaporation cycle. Shallow burial eo-diagenesis led to compaction-driven dissolution and recrystallization into fine-grained halite and carnallite laminites but poorly affected the overall preservation of primary deposits.Measurements and profile analysis of bromine trace element concentrations reveal a palaeo-salinity increase of the parent brine for cycle II to base IX caused by a relative brine level fall and a gradual confinement of the salt basin, likely associated with an excess of saline elements inflow from hydrothermal vents. Similar depositional textures and bromine concentration variations are observed in the lower cycles of the Aptian evaporites from the counter-part Sergipe Basin in the northern part of the Brazilian margin, testifying of a progressive brine salinity rise due to a palaeogeographic confinement along the northern segment of the South Atlantic Ocean.In Congo, the sylvite displays horizontal “pseudo-stratifications” that unconformably overlay the crests of anticlines and propagate along flanks as a sharp-based caprock. The flushing and transformation of depositional carnallite – halite into secondary sylvite – halite is interpreted as having been caused by down-stepping incremental dissolutions sourced by younger pervasive connate to phreatic waters. In Sergipe, the sylvite is interpreted as secondary but further results from syndepositional dissolution of carnallite and tachyhydrite due to a regional North Atlantic Ocean ingression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call