Abstract

Indoor air contamination by radon and its decay products is currently the focus of considerable attention and is considered by many to be the greatest potential cause of lung cancer in the human environment next to smoking. The bifurcations of the human respiratory tract are regions in which enhanced local deposition of particles (hot spots) can occur. These hot spots are important in estimating the risk from radon exposure but existing mathematical models do not characterize them accurately. In this study, radon progeny in the molecular size range were sampled through an aluminium model of a lung bifurcation. The parent and secondary tube diameters used correspond to the third and fourth generations in Weibel's lung model. Steady state, nominally laminar flows were used in the study. Deposition was measured along the inside, outside, top, and bottom walls of the secondary tubes. Experimental results indicate that the deposition along the inside wall is noticeably higher than that along the other walls. The results also show that along the inside, top, and bottom walls the deposition has its overall maximum at the carina. Other maxima are also observed along the secondary tubes downstream from the carina.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.