Abstract

The solution-precursor plasma-spray (SPPS) process is capable of producing highly durable thermal barrier coatings. In an effort to improve the understanding of the deposition mechanisms in this novel process, a series of specific experiments, where the substrate is held stationary and the plasma torch is programmed to scan a single pass across the substrate, were conducted and the resulting deposits were carefully characterized. In addition to the deposition mechanisms identified previously in the stationary torch experiments, the deposition mechanisms of two other types of deposits, thin film and fine spherical particles, were identified in this study. The melting of inflight formed 7YSZ particles and their rapid solidification to form ultra-fine splats on the substrate was found to be the dominant deposition mechanism. The characterization of actual SPPS coatings confirmed that the various coating-deposition mechanisms identified in the model experiments occur in concert during the actual coating process. Adherent deposits (ultra-fine splats, deposits from gel-like precursor and film formed via chemical vapor deposition), unmelted particles (spherical particles, deposits from non-decomposed precursor) and porosity were estimated to constitute ∼65, ∼19 and ∼16 vol%, of the coating, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.