Abstract
An approach for simultaneously synthesizing and immobilizing silver nanoleaves (SNLs) on γ-mercaptopropyltrimethyoxysilane (MPTS)-modified chemical vapor deposited (CVD) diamond film surface has been developed. As-grown diamond film surface was oxidized by exposing to UV irradiation in oxygen gas atmosphere, and then the oxygen-terminated diamond film was dipped into a methanol solution of MPTS to form a self-assembled MPTS monolayer on the diamond film surface. SNLs were then deposited on diamond film surfaces by an electroless process. The morphology of SNL film was characterized by scanning electron microscopy. The thickness of SNL layer deposited onto the CVD diamond substrate increased with increasing the deposition time and the formation mechanism of SNL films was also discussed. Their performance as surface-enhanced Raman scattering (SERS) substrates was evaluated by using rhodamine 6G (R6G) as the probe molecule. Compared with self-assembled silver nanoparticle film and silver film from the mirror reaction, the SERS signal of R6G was obviously improved on the SNL films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.