Abstract

The movement of sand by erosion is a common feature of drylands during droughts and periods of sparse vascular plant cover. We examined the effects of sand deposition on the bioavailability of N in cyanobacterial-dominant soil crusts during and after a severe drought. Crusts were sampled from two depths on stony and stone-free surfaces with and without sandy deposits. All sites supported an extensive cover (up to 51%) of N-fixing cyanobacteria and cyanolichens. During drought, sand-covered crusts had up to three-times more mineral N (NH 4 + and NO 3 −) and twice the mineralisable N, at both depths, than sand-free samples. Mineralisable N was always greater in the surface soil layer both during and after drought. During the drought, two common N-fixing cyanobacteria ( Scytonema cf. hofman-bangii, Stigonema ocellatum) were significantly more abundant on uncovered than sand-covered surfaces. Increased N bioavailability likely results from autolysis and subsequent breakdown of N-enriched cyanobacterial cell material mediated by changes in the soil surface microenvironment. Our work suggests that landscape-level processes of sand deposition have a marked effect on soil nutrient pools by enhancing the accumulation of plant-available N on cyanobacterial crusted surfaces. Inappropriate land management or the loss of cyanobacterial soil crusts during drought would compromise the long-term bioavailability of soil N.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.