Abstract

Abstract Preliminary results of eddy correlation measurements of fluxes of NO2, and O3 made over a coniferous and a deciduous forest site in Denmark are presented. The total resistance to deposition are calculated and subdivided into aerodynamic, viscous sub-layer and surface resistance for investigation of the influence of meteorological factors. The viscous sub-layer resistance is derived by a new theory, taking the bluff roughness elements of the forest and the dimension of the needles/leaves as well as the LAI into account. The fluxes of nitrogen dioxide and ozone are related to the fluxes of water vapour and carbon dioxide. The results from the coniferous forest site (Norway spruce) show a diurnal variation in the deposition velocities and surface resistances during the growth period, which is consistent with a stomatal uptake of the gases. However, a substantial deposition is also found at night and in winter indicating a significant role of atmospheric chemistry and surface reactions. The experiment at the deciduous forest site (beech) shows the difference in deposition to the site before and after bud burst, thus describing the influence of the stomatal activity of the leaves on the uptake of gases in the forest ecosystem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.