Abstract

Aluminium oxide films deposited by rf magnetron sputtering for protective coatings have been investigated. The alumina films are found to exhibit grainy surface microstructure. The grain size, structure and density depend on different system parameters such as argon and/or oxygen flow rate and applied rf power etc. The effect of transition of the discharge from metallic to reactive mode on the surface characteristics of the alumina film is studied. X-ray diffractometry reveals that in poisoned mode of sputtering and under optimized power and pressure, crystalline alumina film can be grown. Different system conditions are optimized for corrosion resistant aluminium oxide films with good adhesion properties. Nanostructured alumina film is obtained at lower pressure (8 × 10 −4 to 9 × 10 −4 Torr) by rf reactive magnetron sputtering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.