Abstract

The crystallization of nonsteroidal anti-inflammatory drug [2-(4-isobutyl-phenyl) propionic acid] ibuprofen (IBP) on a hydroxypropyl cellulose (HPC) and polyacrylamide (PAAm) gel was studied as well as the release kinetics of the drug. The IBP was crystallized on the gel surface of HPC/PAAm. It had a prismatic shape and the growth was made in an aqueous medium; the crystallinity grade of the gels HPC/PAAm and HPC/PAAm-IBU increased to 68% and to 58%, respectively. The release of IBP is performed by two means: by a non-Fickian diffusion process and by relaxation of the chains of the gel; without regard to temperature and the diffusion media, this correlates with the lower critical solution temperature (LCST) of the proposed gel. This polymer matrix provides an option for releasing nonsteroidal anti-inflammatory drugs in a temperature range of 35–39°C. Korsmeyer and Peppas mathematical model was simulated for data releases, statistically significant at 95% confidence level.

Highlights

  • Gels represent a major group of biomaterials; they are considered intelligent systems, as they have a swelling response depending upon selective environmental conditions such as pH, temperature, ionic strength, and electric and magnetic field [1, 2]

  • IBP was incorporated into hydroxypropyl cellulose (HPC)/PAAm films and the release kinetics was measured

  • The incorporation of the nonsteroidal anti-inflammatory drug (NSAID) was verified with Fourier Transform Infrared (FTIR)

Read more

Summary

Introduction

Gels represent a major group of biomaterials; they are considered intelligent systems, as they have a swelling response depending upon selective environmental conditions such as pH, temperature, ionic strength, and electric and magnetic field [1, 2]. Within the gels we find hydrogels, which are synthesized using water as reacting medium. Responsive hydrogels have been synthesized from various homopolymers and copolymers, with recent wider applicability, as monomers combine to provide good mechanical properties, along with other monomers that give gels a hydrophilic material nature, as well as a selective response to environmental conditions. There has been an increased interest in hydrogels, and they have been extensively studied as drug delivery systems that allow the release of the right amount of the active ingredient, at the appropriate time and at specific sites within the body. Previous studies of the HPC/PAAm gels have been performed; the phase behavior has been studied, and it was found that the LCST and UCST (upper critical solution temperature) depend on the amount of HPC. The mathematical models were used to find a correlation with experimental data

Experimental
Results and Discussion
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call