Abstract

Secondary exposure to e-cigarette aerosol (passive vaping) will soon become a pressing public health issue in the world. Yet, the current knowledge about respiratory depositions of e-cigarette aerosol through passive vaping in human airways is limited due to critical weaknesses of traditional experimental methods. To fill in this important knowledge gap, this study proposed a special approach involving an upgraded Mobile Aerosol Lung Deposition Apparatus (MALDA) that consists of a set of human airway replicas including a head airway, tracheobronchial airways down to the 11th lung generation, and a representative alveolar section. In addition to the comprehensive coverage of human airways, the MALDA is easily transportable for providing efficient estimations of aerosol respiratory deposition. In this study, the MALDA was first evaluated in the laboratory and then applied to estimate the respiratory deposition associated with passive vaping in an indoor real-life setting. The results showed that the respiratory deposition data aligned closely with the conventional respiratory deposition curves not only in the head-to-TB region but also in the alveolar region. The strengths of MALDA demonstrate great promise for a wide variety of applications in real-life settings that could provide crucial information for future public health and indoor air quality studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call