Abstract

ABSTRACTIn this paper we present the results of the optimization of hydrogenated amorphous silicon films deposited by the hot-wire method in a larger area system. Using a two-wire design, we succeeded in depositing films that exhibit uniform electrical properties over the whole 4” x 4” Corning 7059 glass substrate. At a substrate temperature of 430 °C. and a pressure of 20 μbar we obtained a growth rate of ∼2 nm/s. The temperature of the tungsten filaments was kept at 1850 °C. The values for the photoconductivity and dark conductivity were 8.9×10−6 S/cm and 1.6×10−10 S/cm respectively, whereas the ambipolar diffusion length, as measured with the Steady-State Photocarrier Grating technique (SSPG), amounted to 145 nm. This value is higher than for our device quality glow-discharge (GD) films, which yield devices with efficiencies higher than 10%. The hydrogen content was 9.5%.We report on the density-of-states (DOS) distribution in the films, which was measured with the techniques of Thermally Stimulated Conductivity (TSC) and Constant Photocurrent Method (CPM). Furthermore, we describe the behavior of the electrical properties on light-induced degradation. Finally, we incorporated these films in solar cells, using conventional GD doped layers. Preliminary SS/n-i-p/ITO devices yielded efficiencies in excess of 3% under 100 mW/cm2 AM 1.5 illumination. Further work concerning the optimization of the interfaces is in progress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.