Abstract

A convenient, laboratory-scale method for the vapor deposition of dense siloxane monolayers onto oxide substrates was demonstrated. This method was studied and optimized at 110 °C under reduced pressure with the vapor of tetradecyltris(deuteromethoxy)silane, (CD(3)O)(3)Si(CH(2))(13)CH(3), and water from the dehydration of MgSO(4)·7H(2)O. Ellipsometric thicknesses, water contact angles, Fourier transform infrared (FTIR) spectroscopy, and electrochemical capacitance measurements were used to probe monolayer densification. The CD(3) stretching mode in the FTIR spectrum was monitored as a function of the deposition time and amounts of silane and water reactants. This method probed the unhydrolyzed methoxy groups on adsorbed silanes. Excess silane and water were necessary to achieve dense, completely hydrolyzed monolayers. In the presence of sufficient silane, an excess of water above the calculated stoichiometric amount was necessary to hydrolyze all methoxy groups and achieve dense monolayers. The excess water was partially attributed to the reversibility of the hydrolysis of the methoxy groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.